- Data analysis guidelines for single cell RNA seq in biomedical studies and clinical applications
- Background
- General tasks of single-cell RNA seq data analysis
- Experimental design
- Raw data processing
- QC and doublet removal
- Expression normalization
- 生物と技術の両方に要素がある。
- 細胞サイズと細胞周期
- スケーリング
- Data integration
- Feature selection
- Dimensionality reduction and visualization
- Identification of cell subpopulations
- Cell type annotation
- 遺伝子の発現の仕方で
- マーカー発現で
- 関連データとの紐付けで
- 教師あり学習で
- Functional enrichment analysis
- Trajectory inference and RNA velocity
- Cell-cell communications
- Regulon inference and TF activity prediction
- WGCNA
- SCENIC
- SCODE, SINCERITIES
- DeepDRIM, SIGNET
- Metabolic analysis